
SWE 637 Software Testing
Activities, week 4

Testing with test doubles

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Class Activity #4

Test doubles

Consider testing a class for airline reservation services. It has a ranking

service as a dependency, with the idea that higher ranking customers get better

arrangements (better seats, early boarding, etc.). We are not testing the ranking

service, and we should assume it’s stochastic (that is, it might give

different answers every time).

2

A simple example

An implementation of ReservationService might look like this:

An associated test might look like this:

public class ReservationService {
// instance variables, constructors, other methods omitted for now

public void reserve (Customer customer) {
RankingService rankingService = new RankingService();
// more code that uses the ranking service by calling its method
// public Rank getRank(Customer customer)
// on the rankingService object.

}
}

@Test public void testReservationService () {
ReservationService reservationService = new ReservationService();
RankingService fakeRankingService = new FakeRankingService(); // inherits from RankingService
// Umm... How do I get RankingService.reserve() to use this test double?
// some assertion about reservationService.reserve(“John Smith”);
// some assertion about reservationService.reserve(“Jane Doe”);

}

3

Utilizing the Test Double

What if we make rankingService a member variable of ReservationService?

What else do we need to do? Hint: think about seams

public class ReservationService {

private RankingService rankingService;

// instance variables, constructors, other methods omitted for now

public void reserve (Customer customer) {
rankingService = new RankingService();
// more code that uses the ranking service by calling
// public Rank getRank(Customer customer)
// on the rankingService object.

}
}

Develop one or more simple tests with FakeRankingService.

Focus on what you want to test, not the JUnit syntax 4

Utilizing Seams

Given what we know about seams, develop an approach to using a fake ranking
service

1. Using a compiler seam

2. Using an inheritance seam
without dependency injection

3. Using an inheritance seam
with dependency injection

4. Using Jmockit (try this one if your group finishes your assigned approach)

5

1. Using a compiler seam
public class ReservationService {

private boolean testMode = false;

public ReservationService (boolean testMode) {
this.testMode = testMode;

}

// instance variables, other methods omitted for now

public void reserve (Customer customer) {
RankingService rankingService;
int rank;
if (testMode) {

rankingService = new RankingServiceFake();
} else {

rankingService = new RankingService();
}
rank = rankingService.getRank();
// more code that uses the rank provided by the getRank() call

}
}

@Test public void testReservationService () {
ReservationService reservationService = new ReservationService(true);
// some assertion about reservationService.reserve(“John Smith”);
// some assertion about reservationService.reserve(“Jane Doe”);

}

Here we set ‘test mode’ in the

constructor and execute different

code if we’re in ‘test mode’.

6

2a. Without dependency injection

7

public class ReservationService {

private RankingService rankingService;

public ReservationService () {
this.rankingService = RankingServiceFactory.getRankingService();

}

public void setTestMode () {
this.rankingService = RankingServiceFactory.getRankingServiceFake();

}

// instance variables, other methods omitted for now

public void reserve (Customer customer) {
// more code that uses the ranking service by calling
// public Rank getRank(Customer customer)
// on the rankingService object.

}
}

@Test public void testReservationService () {
ReservationService reservationService = new ReservationService();
reservationService.setTestMode(); // enable unit test mode
// some assertion about reservationService.reserve(“John Smith”);
// some assertion about reservationService.reserve(“Jane Doe”);

}

What if a call to setTestMode() sneaks into delivered software?

Here we use a method to put the

class into ‘test mode’ and get a fake

ranking service using a

RankingServiceFactory class.

2b. Without dependency injection

8

public class ReservationService {

private RankingService rankingService;

public ReservationService () {
this.rankingService = RankingServiceFactory.getRankingService();

}

public ReservationService (RankingService rankingServiceFake) {
this.rankingService = rankingServiceFake;

}

// instance variables, other methods omitted for now

public void reserve (Customer customer) {
// more code that uses the ranking service by calling
// public Rank getRank(Customer customer)
// on the rankingService object.

}
}

@Test public void testReservationService () {
RankingService rankingServiceFake = new RankingServiceFake(); // inherits from RankingService
ReservationService reservationService = new ReservationService(rankingServiceFake);
// some assertion about reservationService.reserve(“John Smith”);
// some assertion about reservationService.reserve(“Jane Doe”);

}

Here we use a ‘test-mode’ constructor

to pass in the fake ranking service

(which was externally-constructed).

3. With dependency injection

9

public class ReservationService {

private RankingService rankingService;

// instance variables, constructors, other methods omitted for now

public void setRankingService (RankingService rankingService) {
this.rankingService = rankingService;

}

public void reserve (Customer customer) {
// more code that uses the ranking service by calling
// public Rank getRank(Customer customer)
// on the rankingService object.

}
}

@Test public void testReservationService () {
ReservationService reservationService = new ReservationService();
RankingService rankingServiceFake = new RankingServiceFake(); // inherits from RankingService
reservationService.setRankingService(rankingServiceFake);
// some assertion about reservationService.reserve(“John Smith”);
// some assertion about reservationService.reserve(“Jane Doe”);

}

This affects ReservationService users and breaks encapsulation

Here we use a setter method to

always pass in the ranking service

(real OR fake); or we could use a

single constructor.

4. Using JMockit

10

public class ReservationService {

private RankingService rankingService;

// instance variables, constructors, other methods omitted for now

public void reserve (Customer customer) {
rankingService = RankingServiceFactory.getRankingService();
// more code that uses the ranking service by calling
// public Rank getRank(Customer customer)
// on the rankingService object.

}
}

@Mocked RankingService rankingServiceMock;

@Test public void testReservationService () {
new Expectations() {

RankingService.getRank(new Customer(“John Smith”);
returns(5); // John Smith has rank=5

RankingService.getRank(new Customer(“Jane Doe”);
returns(2); // Jane Doe has rank=2

}

ReservationService reservationService = new ReservationService();
// some assertion about reservationService.reserve(“John Smith”);
// some assertion about reservationService.reserve(“Jane Doe”);

}

“Expect the getRank() method to be

called with ‘John Smith’ as the

argument, and when that happens,

then return 5.”

